Geometry & Measurement Made Easy

Area, Perimeter, Volume and Angle Tricks for PSLE

AREA

PERIMETER

Your Complete Guide to PSLE Mathematics Excellence

Master every formula, technique, and problem-solving strategy

Table of Contents

Chapter 1: Foundation Concepts

- Understanding Basic Shapes
- Units and Measurements
- Essential Formulas

Chapter 2: Area Mastery

- Rectangles and Squares
- Triangles and Base-Height
- Circles and Composite Figures

Chapter 3: Perimeter Excellence

- Basic Perimeter Calculations
- Circumference of Circles
- Complex Shape Perimeters

Chapter 4: Volume Techniques

- Cubes and Cuboids
- Liquid Volume Problems
- Finding Unknown Dimensions

Chapter 5: Angle Properties

- Angles on Lines and Points
- Triangle Angle Rules

Chapter 6: PSLE Success Strategies

Problem-Solving Techniques

- Common Mistakes to Avoid
- Examination Tips

Chapter 1: Foundation Concepts

Building Strong Mathematical Foundations

Understanding Basic Shapes

2D Shapes Square 4 equal sides, 4 right angles Opposite sides equal, 4 right angles Triangle: 3 sides, angles sum to 180° Perfect round shape, constant radius

3D Shapes

Cube

6 square faces, all edges equal

Cuboid

6 rectangular faces, opposite faces equal

Cylinder

2 circular faces, curved surface

Length Area Volume

- mm (millimetre)
- cm (centimetre)
- m (metre)
- km (kilometre)

- cm² (square centimetre)
- m² (square metre)
- km² (square kilometre)
- cm³ (cubic centimetre)
 - m³ (cubic metre)
 - \(\(\text{(litre)} = 1000 \text{ cm}^3 \)
 - ml (millilitre) = 1 cm³

Essential Formula Quick Reference

Area Formulas

Rectangle: length × width

Square: side × side

Triangle: $\frac{1}{2}$ × base × height

Circle: $\pi \times \text{radius}^2$

Volume Formulas

Cube: side³

Cuboid: length × width × height

Cylinder: $\pi \times \text{radius}^2 \times \text{height}$

Chapter 2: Area Mastery

Complete Guide to Area Calculations

Rectangles and Squares

Rectangle and Square Area Formulas

Rectangle

Area = length × width

Both length and width must be in the same units

Square

Area = side × side = side²

All four sides are equal in a square

Worked Example: Rectangle Area

Question: Find the area of a rectangle with length 12 cm and width 8 cm.

Step 1: Identify the formula: Area = length × width

Step 2: Substitute the values: Area = $12 \text{ cm} \times 8 \text{ cm}$

Step 3: Calculate: Area = 96 cm²

Answer: 96 cm²

Triangle Area

Triangle Area Formula

Area = $\frac{1}{2}$ × base × height

Key Points:

- Base can be any side of the triangle
- Height is perpendicular to the base
- Height forms a right angle with the base
- Units: if base and height in cm, area in cm²

Common Mistakes:

- Forgetting the ½ in the formula
- Using slant height instead of perpendicular height
- Mixing up base and height measurements
- Wrong units in the final answer

Worked Example: Triangle Area

Question: A triangle has a base of 10 cm and height of 6 cm. Find its area.

Step 1: Write the formula: Area = $\frac{1}{2}$ x base x height

Step 2: Substitute: Area = $\frac{1}{2}$ × 10 cm × 6 cm

Step 3: Calculate: Area = $\frac{1}{2}$ × 60 cm² = 30 cm²

Answer: 30 cm²

Circle Area and Circumference

Worked Example: Circle Area

Question: Find the area of a circle with radius 7 cm. (Take $\pi = 22/7$)

Step 1: Write the formula: Area = $\pi \times \text{radius}^2$

Step 2: Substitute: Area = 22/7 × 7² = 22/7 × 49

Step 3: Simplify: Area = 22 × 7 = 154 cm²

Answer: 154 cm²

Composite Figures

Composite Figure Strategies

Addition Method

- Break the figure into simple shapes
- Calculate area of each shape
- Add all areas together

Subtraction Method

- Find area of larger shape
- Find area of cut-out portions
- Subtract cut-out from larger area

Worked Example: Composite Figure

Question: Find the area of a shape made by joining a rectangle ($8cm \times 5cm$) and a triangle (base 8cm, height 3cm).

Step 1: Calculate rectangle area: $8 \times 5 = 40 \text{ cm}^2$

Step 2: Calculate triangle area: $\frac{1}{2} \times 8 \times 3 = 12 \text{ cm}^2$

Step 3: Add both areas: $40 + 12 = 52 \text{ cm}^2$

Answer: 52 cm²

Chapter 3: Perimeter Excellence

Master All Perimeter Calculations

Basic Perimeter Concepts

Perimeter Formulas for Basic Shapes

Rectangles and Squares

Rectangle: 2 × (length + width)

Square: 4 × side

544410. 1 ** 5140

Triangles

Triangle: side1 + side2 + side3

Sum of all three sides

Add all four sides

Perimeter

- Distance around the outside
- Measured in length units (cm. m)
- Like putting a fence around a field
- Add all the sides

Area

- Space inside the shape
- Measured in square units (cm², m²)
- Like painting the surface
- Use specific formulas

Circle Circumference

Circle Circumference Formulas

Using Radius

 $C = 2 \times \pi \times radius$

When radius is given

Using Diameter

 $C = \pi \times diameter$

When diameter is given

Partial Circles:

- Semicircle perimeter = $\pi \times \text{radius} + \text{diameter}$
- Quarter circle perimeter = $\frac{1}{2} \times \pi \times \text{radius} + 2 \times \text{radius}$

Worked Example: Semicircle Perimeter

Question: Find the perimeter of a semicircle with radius 14 cm. (Take π = 22/7)

Step 1: Semicircle perimeter = curved part + straight part

Step 2: Curved part = $\frac{1}{2} \times 2 \times \pi \times \text{radius} = \pi \times \text{radius} = \frac{22}{7} \times 14 = 44 \text{ cm}$

Step 3: Straight part = diameter = $2 \times 14 = 28$ cm

Step 4: Total perimeter = 44 + 28 = 72 cm

Answer: 72 cm

Complex Shape Perimeters

ംട്ട് Strategies for Complex Shapes

Step 1: Trace

Trace around the outside edge of the shape with your finger

Step 2: Identify

Identify each side or curve that forms the perimeter

Step 3: Calculate

Calculate the length of each part and add them up

Chapter 4: Volume Techniques

Master 3D Measurements and Calculations

Understanding Volume

Volume: What It Measures

Definition

Volume measures the amount of space inside a 3D object. Think of it as "How much can it hold?"

Examples:

- Water in a swimming pool
- Air inside a balloon
- Books that fit in a box

Units

cm³ (cubic centimetre)

m³ (cubic metre)

 ℓ (litre) = 1000 cm³

 $ml (millilitre) = 1 cm^3$

Cube and Cuboid Volume

Volume Formulas

Cube

 $Volume = side^3$

Volume = side × side × side

All edges are equal

Cuboid

 $Volume = 1 \times w \times h$

length × width × height

Different edge lengths

Worked Example: Cube Volume

Question: Find the volume of a cube with edge length 5 cm.

Step 1: Identify: It's a cube, so all edges are equal

Step 2: Formula: Volume = side³

Step 3: Substitute: Volume = $5^3 = 5 \times 5 \times 5$

Step 4: Calculate: Volume = 125 cm³

Answer: 125 cm³

Worked Example: Cuboid Volume

Question: A rectangular tank has length 8 m, width 5 m, and height 3 m. Find its volume.

Step 1: Identify measurements: I = 8 m, w = 5 m, h = 3 m

Step 2: Formula: Volume = length × width × height

Step 3: Substitute: Volume = $8 \times 5 \times 3$

Step 4: Calculate: Volume = 120 m³

Answer: 120 m³

Liquid Volume Problems

Liquid Volume Relationships

Key Conversions

- 1000 ml = 1 {

Problem Types

- Overflow problems

Worked Example: Water Tank Problem

Step 1: Convert volume: $72 \ell = 72,000 \text{ cm}^3$

Step 2: Use volume formula: Volume = length \times width \times height

Step 3: Substitute: $72,000 = 60 \times 40 \times \text{height}$

Answer: 30 cm

Finding Unknown Dimensions

Q Strategies for Finding Unknown Dimensions

Given Volume + 2 **Dimensions**

Cube Problems

Check Your Answer

Chapter 5: Angle Properties

Master All Angle Rules and Calculations

Basic Angle Properties

Worked Example: Angles on a Straight Line

Question: Two angles on a straight line are 65° and x°. Find x.

Step 1: Use the rule: Angles on a straight line = 180°

Step 2: Set up equation: 65° + x° = 180°

Step 3: Solve: x° = 180° - 65° = 115°

Answer: $x = 115^{\circ}$

Triangle Angle Properties

Triangle Angle Rules

$$\angle A + \angle B + \angle C = 180^{\circ}$$

The sum of angles in any triangle is always 180°

Equilateral Triangle

All angles = 60° All sides equal

Isosceles Triangle

Two angles equal
Two sides equal

Right-angled Triangle

One angle = 90° Other two add to 90°

Worked Example: Triangle Angles

Question: In a triangle, two angles are 45° and 70°. Find the third angle.

Step 1: Use the rule: Sum of triangle angles = 180°

Step 2: Set up equation: $45^{\circ} + 70^{\circ} + \text{third angle} = 180^{\circ}$

Step 3: Solve: third angle = $180^{\circ} - 45^{\circ} - 70^{\circ} = 65^{\circ}$

Answer: 65°

Quadrilateral Angle Properties

Special Quadrilaterals

General Rule

Sum of angles = 360°

This applies to ALL quadrilaterals

Rectangle/Square

All angles = 90°

Four right angles

Parallelogram Rhombus

- Opposite angles are equal
- Adjacent angles add to 180°
- Opposite sides are parallel

- Opposite angles are equal
- All sides are equal
- Adjacent angles add to 180°

Trapezium

- One pair of parallel sides
- Co-interior angles on same side add to 180°
- Sum of all angles = 360°

Worked Example: Parallelogram Angles

Question: In a parallelogram, one angle is 110°. Find all other angles.

Step 1: In a parallelogram, opposite angles are equal

Step 2: So another angle is also 110°

Step 3: Adjacent angles add to 180°: 180° - 110° = 70°

Step 4: The other two angles are both 70°

Answer: 110°, 70°, 110°, 70°

Chapter 6: PSLE Success Strategies

Examination Techniques and Problem-Solving Methods

Problem-Solving Framework

1 The PSLE Problem-Solving Process

Step 1: Understand

Step 2: Plan

Read the question carefully

• Choose the right formula

- Identify what is given
- Identify what to find
- Draw a diagram if helpful

Step 3: Solve

- Show all working clearly
- Use correct formulas
- Calculate carefully
- Include units in answer

- · Decide on the method
- Check units match

Step 4: Check

- Does the answer make sense?
- Are the units correct?
- Re-read the question

Common Mistakes to Avoid

▲ Top 10 Mistakes in Geometry & Measurement

Formula Mistakes

- Forgetting ½ in triangle area formula
- Using diameter instead of radius (or vice versa)
- Confusing perimeter and area formulas
- Wrong formula for composite shapes
- Mixing up volume and area formulas

Calculation Mistakes

- Wrong units in final answer
- Arithmetic errors in multiplication
- Not converting units properly
- Forgetting to add/subtract in composite figures
- Rounding too early in calculations

Quick Reference Formulas

Formula Cheat Sheet

Area Formulas

Rectangle: 1 × w Square: s²

Triangle: ½ × b × h

Circle: mr²

Parallelogram: b × h

Perimeter Formulas

Rectangle: 2(1 + w)

Square: 4s

Triangle: a + b + c

Circle: 2mr

Volume & Angles

Cube: s³

Cuboid: $1 \times w \times h$

Triangle angles: 180°

Quadrilateral: 360°

Straight line: 180°

Examination Tips

For 2-mark questions:

- Double-check units

For 4-5 mark questions:

- Allow 6-8 minutes
- Multi-step problems

PSLE-Style Challenge Problem

Question (5 marks): A rectangular swimming pool is 25 m long and 12 m wide. A

Step 1: Find pool area: $25 \times 12 = 300 \text{ m}^2$

Step 2: Find fountain area: $\pi \times 3^2 = 3.14 \times 9 = 28.26 \text{ m}^2$

Step 3: Swimming area = Pool area - Fountain area

Step 4: Swimming area = 300 - 28.26 = 271.74 m²

Answer: 271.74 m²

Final Success Tips

During Practice

- Practice with actual PSLE papers
- Time yourself regularly
- Learn from your mistakes
- Master the basic formulas first
- Draw diagrams for complex problems

During the Exam

- · Read questions twice before solving
- Show all working clearly
- Check units in every answer
- Don't panic if stuck move on
- Use remaining time to check answers

Congratulations!

You've now mastered all the essential geometry and measurement concepts for PSLE success!

Remember the Keys to Success:

- ✓ Practice regularly with timed conditions
- ✓ Always show your working clearly
- ✓ Double-check your units and calculations
- ✓ Draw diagrams for complex problems
- √ Stay calm and work systematically

Best of luck with your PSLE!

You're well-prepared for excellence!